Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism.
نویسندگان
چکیده
The products of phenylpropanoid metabolism in Arabidopsis include the three fluorescent sinapate esters sinapoylglucose, sinapoylmalate, and sinapoylcholine. The sinapoylmalate that accumulates in cotyledons and leaves causes these organs to appear blue-green under ultraviolet (UV) illumination. To find novel genes acting in phenylpropanoid metabolism, Arabidopsis seedlings were screened under UV for altered fluorescence phenotypes caused by changes in sinapoylmalate content. This screen identified recessive mutations at four Reduced Epidermal Fluorescence (REF) loci that reduced leaf sinapoylmalate content. Further analyses showed that the ref mutations affected other aspects of phenylpropanoid metabolism and some led to perturbations in normal plant development. A second class of mutations at the Bright Trichomes 1 (BRT1) locus leads to modest reductions in sinapate ester content; however, the most notable phenotype of brt1 mutants is the development of hyperfluorescent trichomes that appear to contain elevated levels of sinapate esters when compared to the wild type. These results indicate that at least five new loci affecting the developmentally regulated accumulation of phenylpropanoid secondary metabolites in Arabidopsis, and the cell specificity of their distribution, have been identified by screening for altered UV fluorescence phenotypes.
منابع مشابه
Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis.
Sinapoylmalate is one of the major phenylpropanoid metabolites that is accumulated in the vegetative tissue of Arabidopsis thaliana. A thin-layer chromatography-based mutant screen identified two allelic mutant lines that accumulated sinapoylglucose in their leaves in place of sinapoylmalate. Both mutations were found to be recessive and segregated as single Mendelian genes. These mutants defin...
متن کاملSemidominant mutations in reduced epidermal fluorescence 4 reduce phenylpropanoid content in Arabidopsis.
Plants synthesize an array of natural products that play diverse roles in growth, development, and defense. The plant-specific phenylpropanoid metabolic pathway produces as some of its major products flavonoids, monolignols, and hydroxycinnamic- acid conjugates. The reduced epidermal fluorescence 4 (ref4) mutant is partially dwarfed and accumulates reduced quantities of all phenylpropanoid-path...
متن کاملFour Isoforms of Arabidopsis 4-Coumarate:CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism.
The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals tha...
متن کاملMetabolic Crosstalk: Interactions between the Phenylpropanoid and Glucosinolate Pathways in Arabidopsis.
The phenylpropanoid pathway is big in plants—particularly in trees, which can get big in no small part because of the lignin produced through this pathway. In addition to the huge carbon sink represented by lignin (reviewed in Eudes et al., 2014), the phenylpropanoid pathway also produces important small molecules such as flavonoids. By contrast, the glucosinolate pathway is small potatoes—or r...
متن کاملMetabolic Crosstalk: Interactions between the Phenylpropanoid and Glucosinolate Pathways in Arabidopsis
The phenylpropanoid pathway is big in plants—particularly in trees, which can get big in no small part because of the lignin produced through this pathway. In addition to the huge carbon sink represented by lignin (reviewed in Eudes et al., 2014), the phenylpropanoid pathway also produces important small molecules such as flavonoids. By contrast, the glucosinolate pathway is small potatoes—or r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 159 4 شماره
صفحات -
تاریخ انتشار 2001